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Abstract—The continuous monitoring of activities of daily
living (ADLs) can play a vital role in assessing an individuals
capability to live independently and enable the possibility for
early disease detection. This paper introduces a novel hybrid
model, called quantum-based gated recurrent unit - multiclass
classifier (QGRU-MC), to enhance ADL classification from wear-
able sensor data. Using statistical feature extraction from the raw
accelerometer sensor signals, the QGRU-MC model demonstrates
good performance in activity recognition. Preliminary findings
suggest that our model has good potential in healthcare appli-
cations, and in particular, can contribute to the advancement of
future intelligent systems centered on daily activity monitoring
and the promotion of healthy aging.

I. INTRODUCTION

The continuous and automatic monitoring of activities of
daily living (ADLs) plays a critical role in ambient intel-
ligence, especially within the field of gerontology for as-
sessing an individual’s capability for independent living [1].
Furthermore, monitoring ADLs allows for the early detection
of potential health concerns such as Alzheimer’s disease [2]
and dementia [3]. Previous work has utilized sensing devices
in experiments for ADLs classification [4]. In particular,
wearable sensors, such as devices worn by humans on wrists,
chest, or hips, are the preferred method for their low cost and
high sensitivity and data granularity [5].

Among wearables sensor methods, tri-axial accelerometers
are the reasonable choice for action, movement, and activity
recognition due to their temporal dependencies between data
points [1], [6], [7]. To effectively capture these dependencies,
previous work has highlighted a set of signal processing
and machine learning methods for ADL classification [4]. In
particular, recurrent neural networks (RNNs), a sub-type of
artificial neural networks that are commonly used in natural
language processing [8] and speech recognition [9], have been
used for activity recognition with the use of raw tri-axial
accelerometer data and gyroscope for ADL classification [10].

With recent advancements in quantum hardware and al-
gorithms, quantum machine learning (QML) techniques have
emerged. Offering the potential to solve complex problems
beyond the capabilities of classical machine learning, QML
utilizes properties of quantum systems like entanglement and

superposition and has since attracted attention from the re-
search community as a method to process complex data.
Specific promise has been shown in healthcare applications,
such as the utility of electroencephalogram (EEG) abnormality
prediction, and prediction of physical activity energy expen-
diture [11]–[13].

Within QML, variational quantum circuits (VQCs) [14] are
commonly employed due to their ability to be iteratively
optimized using optimization algorithms and demonstration
of overall applicability regarding expressive power. These
circuits have gained popularity because of their robustness
against quantum noise, particularly in ever-growing noisy
intermediate-scale quantum technology (NISQ) [15]. Addi-
tionally, there is an increasing amount of research demon-
strating the stronger expressive power of VQCs compared
to that of classical neural networks. Examples include the
application of multi-parameterized quantum circuits for sim-
ulating probability distributions [16] and the use of quantum
annealing techniques coupled with entanglement methods to
address challenging classical problems [17].

In this paper, we propose a novel hybrid quantum-based
algorithm gated recurrent unit (QGRU) that utilizes VQCs
and is combined with a classical multiclass classifier. Referred
to in this work as QGRU-MC, we aim to use it to classify
ADL data collected from tri-axial accelerometers to improve
upon the precision of frailty assessment and activity recog-
nition for early detection of diseases. Based on preliminary
results, QGRU-MC demonstrated a good performance in the
prediction accuracy for tri-axial accelerometer time-series data
and indicated it is robust in the handling of data from complex
human movement patterns.

II. DATASET AND DATA PRE-PROCESSING

For the experiment and evaluation, we use the publicly
available “Dataset for ADL Recognition with Wrist-worn Ac-
celerometer” [18]. The data consists of tri-axial accelerometer
recordings collected from a right wrist-worn device as partic-
ipants performed 14 daily activities such as brushing teeth,
climbing stairs, eating, and drinking. The raw sampling rate



was 32 Hz and was annotated. A sample of the acceleration
for walking is presented in Fig 1.

During our analysis of the data, we re-label activities by
grouping them into 8 different categories labeled 0 through 7.
These mapping details are displayed in Table I.

Fig. 1: Raw tri-axial accelerometer signal along the x-, y-, and
z-axis from walking.

A. Pre-processing imbalance data

The class label distribution is heavily imbalanced when
there are several classes with more data than others (see Table
I). For example, the activity labeled ”Telephone” (activity
number 4) is only approximately 10% of the activity labeled
”Eat and drink”(activity number 2) , which is 157 compared
to 1272.

TABLE I: Activity labels and groupings.

Activity Label Values
Get up & lay down 0 593

Walk 1 959
Eat & drink 2 1271

Stairs 3 577
Telephone 4 157

Sit down & stand up 5 522
Brush teeth 6 309
Comb hair 7 243

To address the issue of imbalanced data, the synthetic mi-
nority over-sampling technique combined with edited nearest-
neighbors (SMOTE-ENN) was employed. SMOTE is a resam-
pling technique that synthesizes new instances for the minority
class by interpolating between existing minority [19]. ENN
is a data cleaning method that removes instances from both
the majority and minority classes if their class labels do not
match the majority of their nearest neighbors [20]. The dual
strategy provides a more balanced and cleaner dataset, thereby
improving the performance and robustness of the subsequent
classification model. This in turn leads to a more reliable and
generalized predictive model.

B. Feature Extraction

In order to effectively capture all essential characteristics
of the acceleration data while maintaining a manageable
computational requirement, we derive a compact set of fea-
tures from the acceleration signal by calculating the statistical

representation of the original data. Specifically, we divided
the signal into 3-minute segments and then calculated the
mean, median, standard deviation, interquartile range, and
correlation among the three axes over each of these fixed-
length windows, without any overlap between adjacent win-
dows. This extracted feature method includes the computation
of the above-mentioned statistical metrics and is proven to
yield better activity classification, at least in dynamic activities
studied in the healthcare domain [21]. For our case, these
features are sufficient enough to offer good context-based
information for the QGRU model.

III. MODEL ARCHITECTURE

A. Variational Quantum Circuit block

Generally, the implementation of a VQC block consists of
three main layers: the embedding layer, the variational layer,
and the measuring layer.

1) Encoding Layer: Allows for the encoding of clas-
sical data into a quantum representation through the use of
feature mapping. These features play a vital role in converting
classical input data into a set of gate parameters that generate
the corresponding quantum state. In this work, our encoding
layer consists of amplitude encoding, which encodes data as
amplitudes of the quantum state. This facilitates efficient data
manipulation and processing within the quantum algorithm.

2) Variational Layer: At the heart of the VQC,
the variational layer controls the entanglement and rotation
of a circuit qubit to facilitate complex, non-linear mapping
of information [22]. The efficacy of these mappings has a
significant impact on the prediction accuracy of QML models.
For our QGRU-MC model, we utilize enhanced controlled-Z
rotation (CRZ) for quantum entanglement and for circuit block
connectivity patterns. The implementation of the proposed
model can improve the circuit’s learning ability in two key
ways.

Firstly, the CRZ implementation rotates qubits along the Z-
axis, allowing variational rotation to occur during the quantum
entanglement process. Consequently, this allows qubits to
utilize quantum entanglement for rotations.

Secondly, the circuit block configuration arranges the qubit
in a natural way that forms a closed loop. This pattern
incorporates both local and non-local connections and facil-
itates a balance between simplicity and connectivity. Each
circuit block in this structure is designated to employ qubits
organized in a manner that forms a cyclic loop, as illustrated
in Fig 2. This allows the interaction between consecutive
and non-consecutive qubits. This approach has been shown
to be advantageous for near-term quantum devices in terms
of optimization of expressibility and entangling power of the
quantum circuit [23].

Finally, after a series of CRZ gates, there are three rotation
angles that correspond to each of the three axes (Rn =
R(θnωn, ϕn)) in the single-qubit rotation gates that are also
adjusted iteratively during the optimization process by method
of gradient descent.



Fig. 2: Variational Quantum Circuit (VQC) implementation
utilizing CRZ gates for qubit rotations along the Z-axis during
quantum entanglement.

3) Measurement Layer: After the computational process
of each VQC, there is a measurement layer. In the proposed
model, this involves measuring the probabilities of compu-
tational basis states in the basis of the Pauli-Z operator. On
classical computers, the calculation is performed numerically
using quantum simulator software that offers zero-noise quan-
tum computation. The measurement process generates a fixed-
length vector that is subsequently processed by the classical
computer for making predictions.

B. Quantum Gated Recurrent Unit

Our QGRU-MC model is an extension of classical GRU
by integrating quantum-based algorithms into its architecture.
The key idea is the replacement of classical neural network
components with VQCs in all GRU gates that can properly
utilize the computational advantages offered by quantum com-
putation. Similar to the classical case, QGRU also contains
cells that act as both memory and gates which modify the
flow of information to the next layers. The QGRU contains
two gates which are reset and updated. The reset gates decide
which information must be removed from the memory cell,
while the update gate determines which information should be
refreshed. These manipulations allow the model to retain long
sequences of information without losing important relevant de-
tails. An implementation of the QGRU with support of a linear
embedding layer model is shown in Fig 3 to illustrate how
the input, gates, and cell interact within the model. As seen
in the figure, the linear embedding layers are implemented
before and after each VQC and act as feature encoders to
transform the dimension of input features to the desired target
dimension using matrix multiplication. In particular, when
the target dimension is smaller than the input dimension, the
output is a compressed feature representation. This type of
embedding has been proven to significantly enhance quantum-
enhanced RNN modeling [22].

In our QGRU-MC model, separate feature embeddings are
prevalent for different VQCs. The separate linear embedding
layer before VQCs maps the input data [ht−1, xt] to a concate-
nated feature that is represented as vt,i. By offering a distinct
method for information mapping, the linear embedding layers
that are implemented separately can facilitate an approach for
non-linearity. After the computation in each VQC, the follow-
ing separate linear embedding layer maps the output dimension
to the hidden states dimension ht. This can ensure distinct
information mapping specially tailored to the corresponding

Fig. 3: QGRU embedding example including a linear enhanced
embedding layer.

VQCs functionality. The formulae in the forward pass are
expressed as follows:

yt,r = Lin,r(vt), (1)
yt,u = Lin,u(vt), (2)
xq = Lx,in(xt), (3)
hq = Lh,in(ht−1), (4)
rt = σ(Lr,out(V QC1(yt,r))), (5)
ut = σ(Lu,out(V QC2(yt,u))), (6)
ñt = Ln1,out(V QC3(xq)), (7)
nt = tanh(ñt + ut ⊙ Ln2,out(V QC4(hq))), (8)
ht = (1− ut)⊙ nt + ut ⊙ ht−1, (9)

where vt is the compressed output of [ht−1, xt], Lin,r(u) is
the separate linear embedding layer for the reset and update
gates, Lx(h),in is a linear embedding layer for x and ht−1,
Li,out represents the linear layer after each V QCi (i = 1−4),
and σ is the sigmoid activation function.

C. Multi-class Classifier

The output from QGRU is then passed through a three-
layer feed-forward perceptron that classifies the data into
corresponding activity-labeled categories called multi-class
classifiers. In each layer, there is the implementation of
batch normalization, and the last layer includes a rectified
linear unit (ReLU) activation function to improve the training
stability and model performance. Moreover, a drop-out layer
is included in the third hidden layer to prevent overfitting.
The output from this multi-class classifier will be used for
post-processing with the softmax activation to output the
probabilities for each class. This allows the QGRU-MC to
predict the most likely correct class for a given input sequence.
This hybrid architecture aims to utilize the temporal learning
capabilities of QGRU, the advantage of quantum circuits
with modern quantum-based hardware, and the spatial feature
extraction strength of neural networks.



D. Optimization

QGRU-MC, like classical machine learning models, is
trained for the data-driven task which involves the optimization
of both classical and quantum parameters to minimize the
prediction error. The classical parameters pertain to linear
layers and post-quantum computation in the QGRU cell, while
the quantum parameters are related to the rotation angles
in the quantum circuits. This learning process employs the
gradient-based optimization techniques including the mitiga-
tion of the loss function, L(θ), which is referred to as the
objective function. These gradients are then used to iteratively
update the parameters, aiming to accomplish convergence to an
optimal set of values that potentially reduce the overall error,
while increasing the model accuracy. This strategy involves
iteratively adjusting parameters to get the highest substantial
drop in the loss function, which is written as:

θj ← θj − η∇θjL(θ), (10)
where ∇θ is the gradient and η is the learning rate.

The optimization process involves computing gradients us-
ing a type of forward-mode automatic differentiation that
utilizes the parameter-shift rules for quantum parameters [14].
The gradient calculation of a VQC using the parameter-shift
method can be expressed as:

∇θf(x, θ) =
1

2
[f(x, θ +

π

2
)− f(x, θ − π

2
)], (11)

where f(x, θ) is the output function.

IV. RESULT AND DISCUSSION

For our results, we evaluate the model performance in terms
of evaluation metrics and the confusion matrix. The model is
trained in Python using the Pennylane library as a quantum
simulator for quantum computation. The dataset is split into
training (80%) and test (20%) sets. Moreover, we further split
the training set into sub-train (80%) and validate (20%) sets.

A. Loss and Accuracy

Fig. 4 presents the training and validation loss and accuracy
upon application of our QGRU-MC model to the ADL dataset.
In both cases, there is a consistent decrease, indicating an
effective learning and optimization process that minimizes the
error during the training process. As seen in Fig. 4, the loss
values stabilize after ∼ 60 epochs, indicating we have reached
convergence.

In terms of model accuracy, the accuracy trends for both
training and validation datasets gradually increase during the
training process with validation accuracy only slightly surpass-
ing the training one towards the end. This pattern displays a
good learning process of the model and also shows that the
model generalizes well to unseen data without overfitting.

B. Confusion matrix and classification report

To provide a more comprehensive evaluation, we include
the classification report and confusion matrix. Those tools
not only provide detailed insights into model performance but
also reveal the strengths and weaknesses in classifying each

Fig. 4: QGRU-MC training and validation loss (top) and
accuracy (bottom).

category. The confusion matrix presented in Fig. 5 shows the
model performs extremely well in classifying classes 2 and
6, as indicated by a high number of correct predictions (244
and 56, respectively). In contrast, our model struggles with
differentiating between classes 1 and 3 as there are 49 records
of class 3 incorrectly predicted as class 1. Further, the model
tends to misclassify 49 records of climbing or descending
stairs (class 3) as walking (class 1). This misclassification can
be based on the fact that both movements share similar patterns
which is difficult to discern.

The classification report shown in Table II which sum-
marizes the precision, recall, and F1 score for each class.
The model achieves an overall accuracy of 79%, indicating a
reasonably good ability to correctly classify instances across
the eight different classes. Looking into detail for each class
performance, the model displays its strongest performance
when classifying records belonging to class 2, achieving a
precision of 0.91 and a recall of 0.96, which result in an
F1-score of 0.93. These high values suggest that the model
accurately labels class 2 with minimal false positives. In
contrast, the model faces challenges when identifying an
instance of class 3, evidenced by a low recall score of 0.48
and an F1 score of 0.59.

Our model also performs well in classes 4 and 6. Classifying



Fig. 5: Confusion matrix depicting performance of a multi-
class classifier, illustrating the true versus predicted labels
across the eight activity categories.

the class 4 model shows a strong performance with both
precision and recall at 0.87, resulting in an F1-score of 0.72.
In class 6, the model yielded a precision of 0.84 and a recall
of 0.90, leading to an F1-score of 0.87. The confusion matrix
shows 27 of 31 instances correctly classified for class 4 and
56 of 62 for class 6.

TABLE II: Classification report of the QGRU-MC model.

Class Support Precision Recall F1-score

0 119 0.75 0.68 0.71

1 192 0.73 0.77 0.75

2 254 0.91 0.96 0.93

3 116 0.77 0.48 0.59

4 31 0.87 0.87 0.87

5 104 0.67 0.78 0.72

6 62 0.84 0.90 0.87

7 49 0.70 0.82 0.75

Accuracy 0.79

Macro avg 0.78 0.78 0.78

Weighted avg 0.79 0.79 0.78

On the other hand, moderate performance is noted in
classifying classes 1, 5, and 7. For classes 1 and 5, the model
achieves precision of 0.73 and 0.67, recall of 0.77 and 0.78,
and an F1-score of 0.75 and 0.72, respectively. For class 7,
the model attains a precision of 0.70 and a higher recall of
0.82, compared to classes 1 and 5, and an F1-score of 0.75.
Conversely, the model performs poorly in distinguishing class
0, with a precision of 0.75, a recall of 0.68, and F1-score of
0.71.

V. CONCLUSION

Our proposed model referred to as QGRU-MC was utilized
to classify 14 daily activities through tri-axial accelerometer
data collected from a wrist-worn device. Preliminary testing
achieved an overall accuracy of 79% and a resulting F1-score
of 0.78. Although this work shows promising performance in
classifying ADLs to support healthy aging, further research
and experimentation are necessary. The future plan includes
further work on refining feature engineering, implementing
advanced training techniques, and utilizing different datasets
that support ADLs research. These efforts aim to reduce the
number of misclassifications and improve the models overall
evaluation metrics, especially for the classes with lower perfor-
mance. From our results, the proposed QGRU-MC has great
potential in learning and classifying complex data commonly
encountered in healthcare.
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